Monday, March 5, 2018

Transmission constraining Ontario's Niagara Hydroelectric potential

I was recently asked why I claim there are transmission constraints on electricity generation from Ontario Power Generation (OPG) Niagara river system generators.

I’ve written a number of times on production levels and argued the constraints largely because I have consistently found the actual output from OPG’s 5 Niagara system generators less than it could be. There are current reasons to revisit the issue:
  • In 2017 the total was 11.32 TWh[1], which is probably the lowest level since I first appeared, in 1965,
  • OPG reported 4.5 TWh of "forgone hydroelectric generation" due to surplus baseload generation (SBG) in the first 9 months of 2017, up 15% from 2016 when OPG's annual foregone generation was 4.7 TWh, 
  • OPG intends on adding 106 megawatts of capacity through an overhaul of  two idled old units at the Sir Adam Beck I Generating Station
I’ll review the annual generation data but acknowledge the lowered generation doesn’t prove a transmission constraint - so I’ll also build a timeline demonstrating increased transmission was deemed necessary a decade ago, and the need must have grown significantly, along with generating capacity in the region, since then.

My curiousity on the topic of foregone generation was piqued in June 2011 by an article in the Buffalo News.[2] The article discussed Canada’s inability to utilize all the water it had rights to in generating electricity on the Niagara river, and OPG's Niagara Tunnel project that was to address that, increasing generation by 1.6 TWh. In March 2013 the tunnel was declared, by OPG, to be in-service.

By 2014 I was utilizing Hourly Generator Output and Capability reporting from Ontario’s system operator (IESO) to collect data on individual generators[3], and U.S. Energy Information Administration (form EIA-923) data for the generators on the U.S. side. The comparisons showed OPG output falling far behind the U.S. generation on the Niagara river[4] - a trend which has since, surprisingly, accelerated.

When the output at OPG’s generators did not increase after the Niagara tunnel project completion, I looked for other causes.

Thursday, March 1, 2018

Review of 2017 electricity supply in Ontario

You purchase a  full 9-unit container of energy .
The 3 men who deliver it pour out 2 units out while lecturing on consumption. 
They imply you should make more yourself as they leave.

A couple of months have passed since I last posted to the blog. This may be due to writer's block, or a lack of ambition - or maybe I was wisely waiting until I had something nice to say!

With growing knowledge, and curiosity, I seem to muddle all little issues into the broad themes I deem important - and not only for energy. In this post I'll touch on metrics from 2017 the reader may be looking to this blog to find, with hopes of connecting the data to bigger issues.

There are many possible headlines from an annual analysis:
  • electricity "demand", as reported by the system operator was down, to levels not seen in decades
  • supply generated from fossil fuels (natural gas) was sharply down too, and again to levels probably not seen in over over half a century
  • prices for consumers on regulated price plans were sharply down in 2017 due to legislation and consequent debt (the [un]Fair Power Plan), but,
  • total costs for supply declined in 2017, although average unit cost was up slightly (as demand declined more)
  • nuclear supply was down as one unit (Darlington 2) was out of service for the entire year due to refurbishment, but the units remaining online largely took up the slack as Bruce Power had record output, as did the set of 9 units at Ontario Power Generation which operated during 2017, and
  • for the first year since the system operator reported on their system's wind output, in 2006, it reported a decline (albeit a very slight one)
I didn't wish to dwell on numbers in this post. During 2017 I learned some new data reporting tools which I put on on a site where I invite data-gluttons to learn the filters and views to generate the typical year-end summary statistics, such as the total annual biomass generation for the past decade.
I do wish, in this post, to combine commentary to statistics to demonstrate very good figures from one perspective can have bad implications from a broader perspective. This is particularly important to note as the reasons rates didn't rise sharply in 2017 aren't sustainable.